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Constitutive Activation of Tyrosine Kinase by Oligomerization 
of BCR-ABL1, Allosteric Effect and Adaptor Proteins in Chronic 

Myeloid Leukemia and Novel Therapeutic Strategies

Abbreviations 
ABL1=Abelson protooncogene 1, ALL=acute lymphoblastic 
leukemia, AML=acute myeloid leukemia, AP=accelerated 
phase, BCR=breakpoint cluster region, BMM=bone 
marrow microenvironment, BP=blast phase, CC=coiled-
coil, CML=chronic myeloid leukemia, CML-N=neutrophilic 
chronic myeloid leukemia, CP=chronic phase, 
ERK=extracellular signal-regulated kinase, GAB2=GRB2-
associated binding protein 2, GRB2=growth factor 
receptor-binding protein-2, JAK=Janus kinase, KD=kinase 
domain, LSC=leukemia stem cell, MAPK=mitogen-
activated protein kinase, mTOR=mechanistic target 
of rapamycin, PI3K=phosphatidylinositol-3 kinase, 
PR=proline rich, RasGEF=Ras-specific guanine nucleotide 
exchange factor, SH=src homology, SHP2=src-homology 2 
domain-containing phosphatase 2, SOS=Son of sevenless, 
STAT=signal transducers and activators of transcription, 
TKI=tyrosine kinase inhibitor, 

Introduction
Introduction of orthosteric tyrosine kinase inhibitors 
(TKIs) targeting the breakpoint cluster region (BCR)-

Abelson protooncogene 1 (ABL1) fusion gene products of 
chronic myeloid leukemia (CML) has drastically improved 
prognosis of the patients with CML at chronic phase (CML-
CP) [1-5]. However, during TKI treatment, CML gradually 
progresses into blast phase (CML-BP) due to various 
resistance mechanisms, including secondary mutations 
within the sequences that these orthosteric TKIs target 
[6-8], activation of the downstream signaling effectors 
[9-13], induction of blast transformation [14-18] or 
other resistance mechanisms [19] such as BCR-ABL1 gene 
amplification [20], membrane transporter dysfunction 
[21] and new chromosomal aberrations (+8, +19, +21, +Y, 
second Ph+, or i(17)q) [22,23]. On the one hand, numerous 
reports on the therapy resistance to TKIs by secondary 
mutations have accumulated and new TKIs have been 
developed. 
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Abstract
Introduction of orthosteric tyrosine kinase inhibitors (TKIs) targeting BCR-ABL1 has drastically improved prognosis of 
the patients with CML at chronic phase (CML-CP). However, once blast crisis occurs, conventional therapies including 
TKIs become ineffective to leukemia stem cells (LSCs) of CML. Thus substantially different therapeutics strategies are 
required. This review article is aimed at summarizing the mechanisms of BCR-ABL1 oligomerization, allosteric effect 
on its conformation and adaptor proteins around BCR-ABL1. Then, novel therapeutic strategies against CML LSCs 
based on these three upstream activation mechanisms of the BCR-ABL1 were shown. Oligomerization of BCR-ABL1 is 
required for constitutive activation of tyrosine kinase. Allosteric effect on conformation change of BCR-ABL1 induces 
autophosphorylation of BCR-ABL1 that is required for binding of adaptor proteins that mediate signal transduction. 
Thus inhibitors targeting the BCR coiled-coil (CC) domains that induce oligomerization, allosteric inhibitors and 
inhibitors against adaptor proteins are the promising therapeutic strategies to overcome various types of therapy 
resistance in CML. However, detailed investigations and trials are further required.
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However, once blast crisis occurs, TKIs become ineffective 
to leukemia stem cells (LSCs) of CML. On the other hand, 
the mechanisms of blast transformation are highly 
complicated, including additional genetic alterations 
[15,16], epigenetic dysfunctions [24-26], differentiation 
arrest [27-31], alternative splicing/mis-splicing [32-
34] and aberrantly regulated factors in bone marrow 
microenvironment (BMM) [35,36]. Certainly there 
are many target points, but studies on the therapies 
against CML LSCs based on the mechanisms of blast 
transformation remain at an initial stage [17,18,37-40]. In 
addition, therapies against CML LSCs after BC caused by 
BCR-ABL1-dependent and -independent mechanisms have 
been intensively investigated [6,38,40-42]. However, we 
have not yet obtained satisfactory therapeutic strategies 
against CML LSCs probably due to persistence of CML 
LSCs after treatment[41-43]. Thus substantially different 
therapeutics strategies are required. 

The constitutive activation of BCR-ABL1 tyrosine kinase 
are dependent on oligomerization of BCR-ABL1 [44-
47], allosteric effect on conformational change of BCR-
ABL1 [13,47-50] or adaptor proteins that mediate signal 
transduction from BCR-ABL1 [51-55]. There are many 
adaptor proteins around BCR-ABL1, but growth factor 
receptor-binding protein-2 (GRB2) is the most important 
in leukemogenesis of CML cells [54,55]. This review article 
is aimed at summarizing the mechanisms of BCR-ABL1 
oligomerization, allosteric effect on its conformational 
change and adaptor proteins around BCR-ABL1. Then 
novel therapeutic strategies against CML LSCs based on 
these three upstream activation mechanisms of the BCR-
ABL1 are shown.

Variants of BCR-ABL1 proteins and TKIs

Variants of BCR-ABL1

CML is characterized by the Philadelphia chromosome 
(Ph) generated by the reciprocal translocations t(9;22)
(q34;q11.2) that generates the BCR-ABL1 fusion gene.
There are three types of BCR-ABL1 fusion gene products, 
p190, p210 and p230. Of these three variants, p210 is 
typically found in CML [56] and rarely in acute myeloid 
leukemia (AML) [57]. p190 is frequently observed in acute 
lymphoblastic leukemia (ALL) [58] and occasionally in 
AML [59], while p230 is specifically found in neutrophilic 
CML (CML-N) [60]. We focus on the p210 BCR-ABL1 that is 
substantially involved in CML leukemogenesis, because it 
is found in almost all the cases of CML and its activation of  
downstream signaling pathways is active at both CML-CP 
and CML-BP.

Constitutive activation of the tyrosine kinase in BCR-
ABL1 further activates downstream signaling pathways 
including phosphatidylinositol-3 kinase (PI3K)/AKT/
mechanistic target of rapamycin (mTOR), Ras/extracellular 
signal-regulated kinase (ERK) or Janus kinase (JAK)/
signal transducers and activators of transcription  (STAT) 
signaling. These activated signaling pathways are involved 
in leukemogenesis of CML [6,38,40,42].

TKI resistance

The tyrosine kinase activity in BCR-ABL1 is effectively 
inhibited by orthosteric TKIs. The first TKI imatinib 
drastically improved prognosis of the patients with CML-
CP [1,2]. However, secondary mutations in the tyrosine 
kinase domain of BCR-ABL1 induce resistance to TKIs. 
Thus the second generation TKIs dasatinib (sensitive to 
the mutations Y253H, E255V/K, F359V/I/C), nilotinib 
(sensitive to F317L/VLI/C, T315A, V299L), bosutinib 
(sensitive to Y253F/H, E279K, M351T, H396P/R) and the 
third generation TIK ponatinib (sensitive to T315I and 
others) have been successively developed [4,5,19,61-63]. 
The orthosteric inhibitors, i.e., type  I, II, are ATP-competitive 
inhibitors that block the binding of ATP to the catalytic site 
of the Abl kinase domain (KD) [50]. Unfortunately these 
orthostetic inhibitors except for pnatinib are ineffective to 
the gatekeeper mutation T315I. Certainly PKIs are quite 
effective at CML-CP, but CML-CP progresses to accelerated 
phase (CML-AP) and finally CML-BP due to clonal evolution 
of resistant clones. To overcome this resistance to TKIs, 
novel therapies effectively targeting the critical points 
of BCR-ABL1-dependent and -independent resistance 
have been vigorously studied [6,19,38,40-42,61-64]. 
However, there remain various problems to overcome. 
Probably other therapeutic strategies should be pursued 
[47,50,65,66].

Allosteric effect on BCR-ABL1 conformation

Structure of BCR-ABL1

The p210 BCR-ABL1 protein consists of the following 
domains: the coiled-coil (CC) oligomerization domain in 
BCR (BCR-CC), GRB2-binding domain at Thy177 (Y177) 
in the Ser/Thr kinase (STK) domain, Dbl homology (DH) 
domain and pleckstrin homology (PH) domain in the 
BCR region, and the src homology (SH) domains 3, SH2, 
SH1 (tyrosine kinase domain), nuclear localization signal 
(NLS), DNA-binding (DB) domain and actin-binding (AB) 
domain in the ABL1 region [10,12,13,19,44,48,50,55,61] 
(Figure 1). The tyrosine kinase domain that TKIs target is 
in the SH1 domain [12,13,48,50,61]. BCR-CC is crucial for 
oligomerization of BCR-ABL1, leading to leukemogenesis 
of CML [44,45,46,66].
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Conformational Change of BCR-ABL1

The c-Abl is a cytoplasmic, non-receptor tyrosine kinase, 
encoded by a protooncogene c-abl [50]. c-Abl has two 
isoforms 1a and 1b. The c-Abl 1b has an N-terminal 
myristoyl while c-Abl 1a lacks it [48,67]. Both isoforms 
have N-cap that contains about 80 residues with a critical 
role in auto-inhibition [47-50] (Figure 1). This N-cap is 
broken off from the BCR-ABL1 fusion protein. Thus the 
fusion between BCR and ABL1 causes allosteric effect on 
its conformation [47,49]. This conformational change 
induces switch from a closed inactive state of c-Abl to 
an open active state of BCR-ABL1 [13,47-50], leading to 
activated oligomerization [65,66] and increased tyrosine 
kinase activity [44,45,48,61]. Oligomerization of BCR-
ABL1 via BCR-CC is required for leukemogenesis of CML 
[44-47]. Due to the allosteric effect, autophosphorylation 
at Y177 in the BCR region of BCR-ABL1 is induced by the 
tyrosine kinase in the ABL1 region of BCR-ABL1 [13,61]. 
This phosphorylated Y177 (pY177) in BCR/ABL1 is the 
crucial binding site of an adapter protein GRB2 [44,68] 
that mediates several critical signaling pathways.

Inhibitors Targeting Molecules of Allostery

Inhibitors Targeting BCR-CC

BCR-CC is required for oligomerization of BCR-ABL1 and 
leukemogenesis of CML via compositional change of BCR-
ABL1 [44-46,65,66]. Thus, inhibitors against BCR-CC is 
expected to inhibit cell proliferation and induce apoptosis 
of CML cells (Table 1). N-terminal BCR-CC (residues 1-71) 
contains α1-helix (residues 5-17) and α2-helix (residues 
28-67) [45,65,69], and via interaction between these two 

helices BCR-ABL1 forms dimer and tetramer [65,70]. To 
disrupt the oligomerization of BCR-ABL1, introduction of 
the mutated CC peptide with the N-terminal CC deletion 
(Δ1-61 or Δ1-63) into CML cell lines succeeded in reducing 
cell proliferation and inducing apoptosis [44,70,71] 
(Table 1). Then, several CC mutated inhibitors have 
been elaborated to effectively reduce the tyrosine kinase 
activity of BCR-ABL1, including CCmut2 [45], CCmut3 
[46,69], leukemia-specific cell-penetrating peptide (CPP)-
conjugated CCmut3 (CPP-CCmut3) [72], and CPP-CCmut3-
st [66] (Table 1). In addition, HSP90AB1 in combination 
with 17AAG (tanespimycin) induces nuclear transport of 
BCR-ABL1, resulting in induction of apoptosis by activating 
pro-apoptotic genes and reduction of cell proliferation by 
decreased cytoplasmic oncogenic signaling transduction 
[73] (Table 1).

Allosteric Inhibitors

The c-Abl 1b is composed of myristoyl, N-cap (residues 
1-80), SH3 domain (residues 85-138), linker-H3/H2 
(residues 149-152), SH2 domain (residues 153-237), 
linker-H2/KD (residues 238-250), KD (residues 255-534, 
made by N-lobe, ATP-binding site, catalytic domain and 
C-lobe), and last exon region (NLS, DB and AB) [48,50,74-
77]. The compact conformation of the autoinhibited state 
of c-Abl 1b shows (a) binding of the myristoyl group at 
the hydrophobic pocket (i.e., the myristoyl pocket) of the 
C-lobe KD, (b) juxtaposition between the SH3 domain and 
N-lobe KD, and (c) direct contact of the SH2 domain with 
C-lobe KD [13,47-50,74-77]. In turn, the extended active 
conformation of c-Abl 1b is characterized by the SH2 
docking onto the top of  the N-lobe KD [13,47,48,75,76]. 

Figure 1. Structure of c-Abl 1b and BCR-ABL1. c-Abl 1b has a myristoyl (Myr) and N-cap, which lack in BCR-ABL1. The c-Abl 
1b and the BCR-ABL1 commonly contain src homology domain 3 (SH3), SH2, SH1 (tyrosine kinase domain[KD]), nuclear 
localization signal (NLS), DNA-binding (DB) domain and actin-binding (AB) domain, while the BCR retains coiled-coil  (CC) 
oligomerization domain, growth factor receptor-binding protein-2 (GRB2)-binding domain at Tyr177 (Y177) in the Ser/

Thr kinase (STK) domain, Dbl homology (DH) domain and pleckstrin homology (PH) domain.
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In BCR-ABL1, due to the allosteric effect by deletion of 
the myristoyl and N-cap of c-Abl 1b, its tyrosine kinase 
is constitutively activated. Thus the myristoyl pocket and 
the interaction between SH2 and KD are two target points 
of allosteric inhibitors to inhibit constitutively activated 
tyrosine kinase of BCR-ABL1. Accordingly, there are two 
types of allosteric inhibitors (Table 2). First, the allosteric 
inhibitors GNF-2 (Coi et al., 2009)[78,79], GNF-5 [80], 
BO1 [81,82], asciminib (ABL001) [83-85], BCR.lib_01, 
BCR.lib_02 and BCR.lib_03 [50] bind to the myristoyl 
pocket site at the C-terminus of Abl KD, because these 
allosteric inhibitors mimic the myristate substrate. This 

binding to the myristoyl pocket induces a compact inactive 
conformation of KD, leading to inhibition of the tyrosine 
kinase activity of BCR-ABL1 (Table 2). In particular, 
asciminib is active against all catalytic ATP site mutations 
including the gatekeeper T315I mutation [85]. Second, 
7c12 [86,87] and i7c12-HA4 [88] are allosteric inhibitors 
that interfere with the interaction between the SH2 and 
KD. These allosteric inhibitors switch an extended active 
conformation to a compact inactive conformation of KD, 
resulting in the tyrosine kinase inhibition of BCR-ABL1 
(Table 2). 

Table 1. Inhibitors targeting BCR-CC in CML.

Inhibitors Mechanisms Effect References

Deletion of CC (Δ1-61) Inhibition of oligomerization of 
BCR-ABL1

Inhibition of tyrosine kinase activity of BCR-
ABL1 [71]

Deletion of CC (Δ1-63) Inhibition of oligomerization of 
BCR-ABL1

Inhibition of tyrosine kinase activity of BCR-
ABL1 [44,70]

CCmut2 Inhibition of oligomerization of 
BCR-ABL1

Inhibition of tyrosine kinase activity of BCR-
ABL1 [45]

CCmut3 Inhibition of oligomerization of 
BCR-ABL1

Inhibition of tyrosine kinase activity of BCR-
ABL1 [46,69]

CPP-CCmut3 Inhibition of oligomerization of 
BCR-ABL1

Inhibition of tyrosine kinase activity of BCR-
ABL1 [72]

CPP-CCmut3-st Inhibition of oligomerization of 
BCR-ABL1

Inhibition of tyrosine kinase activity of BCR-
ABL1 [66]

HSP90AB1 + 17AAG Nuclear transport of BCR-ABL1 Reduced tyrosine kinase activity and signal 
transduction [73]

Abbreviations: ABL1=Abelson protooncogene 1, BCR=breakpoint cluster region, CC=coiled-coil, CPP=cell-penetrating 
peptide.

Table 2. Allosteric inhibitors in CML.

Inhibitors Mechanisms Effect References

GNF-2 Binding to the myristoyl pocket site of 
KD

Induction of a compact inactive 
conformation of KD [78,79]

GNF-5 Binding to the myristoyl pocket site of 
KD

Induction of a compact inactive 
conformation of KD [80]

BO1 Binding to the myristoyl pocket site of 
KD

Induction of a compact inactive 
conformation of KD [81,81]

Asciminib Binding to the myristoyl pocket site of 
KD

Induction of a compact inactive 
conformation of KD [83-85]

BCR.lib_01, 
02,03

Binding to the myristoyl pocket site of 
KD

Induction of a compact inactive 
conformation of KD [50]

7c12 Interference with interactions between 
SH2 and KD

Switch from an extended active to a 
compact inactive conformation of KD [86,87]

7c12-HA4 Interference with interactions between 
SH2 and KD

Switch from an extended active to a 
compact inactive conformation of KD [88]

Abbreviations: BCR=breakpoint cluster region, KD=kinase domain, SH2=src homology 2.
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Adaptor Proteins

GRB2-SOS1 complex

There are several adaptor proteins around BCR-ABL1 
such as GRB2, Son of sevenless 1 (SOS1), GRB2-associated 
binding protein 2 (GAB2), src-homology 2 domain-
containing phosphatase 2 (SHP2) and CRKL [51-53]. Of 
these, GRB2 plays the central role in signal transduction 
and leukemogenesis by BCR-ABL1 [54,55]. GRB2 contains 
a single SH2 and two SH3 domains (an N-terminal SH3 
[nSH3] and a C-terminal SH3 [cSH3]) [54,89]. The SH2 
domain of GRB2 recognizes and binds high affinity specific 
phosphorylated tyrosine in the pYXN motif [55], whereas 
the SH3 domains of GRB2 bind to proline rich (PR) domains 
containing the PXXP motif [55]. The SH2 domain of GRB2 
binds to pY177 [68,90]. Then both n-SH3 and cSH3 of 
the active GRB2 recruits SOS1 that is one of the Ras-
specific guanine nucleotide exchange factors (RasGEFs) 
[54], and SOS1 binds to the SH3 domains of GRB2 via its 
C-terminal PR domain [54]. GRB2 translocates SOS1 to the 
cell membrane [91]. Active SOS1 exchanges GDP by GTP 
and induces conformational change of the inactive GDP-
bound state of Ras (Ras-GDP) to its active GTP-bound form 
(Ras-GTP) [47,54,55,92] (Figure 2). The activated Ras 
then activates Raf [92], leading to activation of the Ras/

Raf/extracellular signal-regulated kinase (ERK) signaling 
pathway[54,55,93].

GRB2-GAB2 Complex

Binding of GAB2 to GRB2 is another important mechanism 
of signal transduction from BCR-ABL1 [52,94,95]. GAB2 
has binding sites for other SH2-containing signal relay 
proteins such as p85α regulatory subunit of type Ia PI3K 
and SHP2 [95]. The GAB2 bound to pY177-GRB2 via the 
GRB2 SH3 binding site in GAB2 is tyrosine phosphorylated 
[94,96]. The pY177-GRB2-GAB2 complex further activates 
signaling pathways (Figure 2). On the one hand, the GAB2 
interacts with p85α-PI3K and activates the PI3K signaling 
pathway, leading to activation of AKT [94] and induction 
of cell proliferation, cell survival and leukemogenesis 
of CML (Figure 2). On the other hand, the GAB2 binds to 
SHP2 [96] and the activated SHP2 further activates ERK 
[94], resulting in leukemogenesis of CML (Figure 2). As 
a result, GRB2-GAB2 complex activates the PI3K/AKT 
signaling via binding to p85α-PI3K and the Ras/ERK 
signaling via binding to SHP2 [94,95]. In this regard, the 
Ras/ERK signaling pathway is activated by both the GRB2-
SOS1 complex and the GRB2-GAB2-SHP2 complex [94,95] 
(Figure 2). 

Figure 2. Activation of the Ras/ERK signaling by the GRB2-SOS1 complex and the GRB2-GAB2-SHP2 complex, and 
activation of the PI3K/AKT signaling by the GRB2-GAB2-PI3K complex. Abbreviations: ABL1=Abelson protooncogene 1, 
BCR=breakpoint cluster region, ERK=extracellular signal-regulated kinase, GAB2=GRB2-associated binding protein 2, 
GRB2=growth factor receptor-binding protein-2, PI3K=phosphatidylinositol-3 kinase, SHP2=src-homology 2 domain-

containing phosphatase 2, SOS=Son of sevenless.
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Inhibitors Against Adaptor Proteins

Inhibitors Against pY177-GRB2 Binding

There are several target points around GRB2. First, a Y177 
mutant (Y177F) targets the interaction between pY177 
and GRB2. The BCR-ABL1 mutant (Y177F) reduces the 
downstream effector of the Ras/ERK signaling, resulting 
in inhibition of cell proliferation and leukemogenesis 
[93,94,97] (Table 3). This is thought to be caused by the 
reduced activity of both the GRB2-SOS1 and the GRB2-
GAB2-SHP2 (Table 3, Figure 2). In addition, the mutant 
Y177F induces suppression of the activity of PI3K/AKT via 
the reduced activity of the GRB2-GAB2-PI3K [94] (Table 3, 
Figure 2).

Inhibitors Against GRB2-SOS1 Complex

Modulation of the interaction between GRB2 and SOS1 
is another therapeutic target point. On the one hand, 
deletion of the GRB2 SH3 blocks the interaction between 
the GRB2 nSH3/cSH3 and the SOS1 PR domain, and the 
recruitment of SOS1 to the cell membrane is inhibited, 
leading to suppression of the Ras activity [55,98] (Table 3, 
Figure 2). On the other hand, the polypeptides that disrupt 
the GRB2-SOS1 interaction also have effect on inhibition 
of the GRB2-SOS1 binding and recruitment of SOS1. This 
finally inhibits the Ras/ERK signaling pathway [54,99] 
(Table 3, Figure 2).

Table 3. Inhibitors against adaptor proteins in CML.

Inhibitors Mechanisms Effect References

Y177 mutant (Y177F) Inhibition of GRB2-SOS1 binding Suppression of Ras/ERK 
signaling [93,97]

Y177 mutant (Y177F) Inhibition of GRB2-GAB2-SHP2 binding Suppression of Ras/ERK 
signaling [94]

Y177 mutant (Y177F) Inhibition of GRB2-GAB2-PI3K binding Suppression of PI3K/AKT 
signaling [94]

Deletion of GRB2 SH3 Inhibition of SOS1 binding to GRB2 Suppression of SOS1 
recruitment and Ras activity [55,98]

GRB2-SOS1 interaction 
inhibitors Inhibition of SOS1 binding to GRB2 Suppression of SOS1 

recruitment and Ras activity [54,99]

GAB2 mutant lacking 
binding sites for PI3K 

and SHP2

Inhibition of GAB2-PI3K and GAB2-SHP2 
binding

Suppression of PI3K/AKT and 
Ras/ERK signaling [95]

Abbreviations: ERK=extracellular signal-regulated kinase, GAB2=GRB2-associated binding protein 2, GRB2=growth factor 
receptor-binding protein-2, PI3K=phosphatidylinositol-3 kinase, SH3=src homology 3, SHP2=src-homology 2 domain-
containing phosphatase 2, SOS=Son of sevenless

Inhibitors against GAB2-PI3K binding and GAB2-
SHP2 binding

The Y177 mutant (Y177F) also induces reduction of the 
GRB2-GAB2 activity, as indicated above. This affects 
both the PI3K/ AKT signaling via the Y177-GRB2-GAB2- 
PI3K complex and the Ras/ERK signaling via the Y177-
GRB2-GARB2-SHP2 complex (Table 3). Inhibition of both 
bindings is also a possible therapeutic strategy. GAB2 has 
the binding sites for PI3K and SHP2 [94]. The GAB2 mutant 
that lacks both binding sites blocks the GAB2-PI3K binding 
and the GAB2-SHP2 binding [95]. Thus this GAB2 mutant 
simultaneously suppresses the PI3K/AKT signaling and 
the Ras/ERK signaling pathways [95] (Table 3, Figure 2). 
This can be a promising therapeutic strategy against CML LSCs.

Conclusion
In spite of the success of orthosteric PKIs in management 
of CML-CP, therapies against CML LSCs in CML-BP are 

difficult due to the persistence of therapy-resistant 
LSCs. In this regard, substantially different therapeutic 
strategies based on the mechanisms of oligomerization, 
allosteric effect and adaptor proteins, including inhibitors 
targeting BCR-CC, allosteric inhibitors and inhibitors 
against adaptor proteins, are the promising strategies that 
can overcome various types of therapy resistance in CML. 
However, detailed investigations and trials are further 
required.
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